问鼎娱乐.com|极速飞艇的冠亚和计划|极速赛车计划群群名|sg幸运飞艇计划官方版下载

<label id="6kt4j"></label>

    <li id="6kt4j"></li>
        1. 國際期刊 |轉(zhuǎn)染試劑與反轉(zhuǎn)定量產(chǎn)品登Science

          結(jié)核?。╰uberculosis,TB)是由結(jié)核分枝桿菌(M. tuberculosis,Mtb)感染引起的一類重大慢性傳染病。據(jù)世界衛(wèi)生組織報(bào)道,2020年全球有近990萬新發(fā)TB患者,并有約151萬人因Mtb感染導(dǎo)致死亡。2022年10月14日,中國科學(xué)院微生物研究所劉翠華團(tuán)隊(duì)與北京師范大學(xué)邱小波團(tuán)隊(duì)合作,在Science期刊發(fā)表了題為“A bacterial phospholipid phosphatase inhibits host pyroptosis by hijacking ubiquitin”的研究論文(IF=63.714)。該研究揭示了結(jié)核分枝桿菌利用脂磷酸酶PtpB挾持宿主泛素進(jìn)而拮抗GSDMD介導(dǎo)的細(xì)胞焦亡的病原免疫逃逸新機(jī)制,提供了基于病原-宿主互作界面的結(jié)核病治療新思路和潛在新靶標(biāo)。

           

           
          劉翠華團(tuán)隊(duì)長期致力于Mtb與宿主互作機(jī)制方面的研究,在Nature Immunology(2015)、Nature Communications(2017、2019)、Autophagy(2021)、EMBO Report(2021)、Cellular & Molecular Immunology(2018、2019)等上已經(jīng)發(fā)表了一系列的研究成果,揭示了一系列病原菌與宿主相互博弈的動態(tài)過程及分子機(jī)制,為TB防治提供了多種新思路和潛在新靶點(diǎn)。

           

          在本次研究中,團(tuán)隊(duì)選擇了翌圣的轉(zhuǎn)染試劑與反轉(zhuǎn)定量產(chǎn)品用于相關(guān)基因的研究:

           
          目前轉(zhuǎn)染試劑系列與反轉(zhuǎn)定量系列的產(chǎn)品已經(jīng)榮登《Nature》、《Cell》、《Science》等多個(gè)頂級期刊,獲得科研大牛們認(rèn)可!

           

          IF55分!翌圣轉(zhuǎn)染試劑助力高分文章

          國際期刊 | 翌圣qPCR榮登高分雜志!circVAMP3或成肝細(xì)胞癌治療靶點(diǎn)

          翌圣明星CP--轉(zhuǎn)染試劑與PCR產(chǎn)品又登《Cell》期刊

           

          轉(zhuǎn)染試劑系列(滑動查看)

           

          [1] Liu R, Yang J, Yao J, et al. Optogenetic control of RNA function and metabolism using engineered light-switchable RNA-binding proteins. Nat Biotechnol. 2022;40(5):779-786. doi:10.1038/s41587-021-01112-1(IF=68.164)

          [2] Luo J, Yang Q, Zhang X, et al. TFPI is a colonic crypt receptor for TcdB from hypervirulent clade 2 C. difficile. Cell. 2022;185(6):980-994.e15. doi:10.1016/j.cell.2022.02.010 (IF=66.85)

          [3] Zhou J, Chen P, Wang H, et al. Cas12a variants designed for lower genome-wide off-target effect through stringent PAM recognition. Mol Ther. 2022;30(1):244-255. doi:10.1016/j.ymthe. 2021.10.010 (IF=12.910)

          [4] Chen S, Cao X, Zhang J, Wu W, Zhang B, Zhao F. circVAMP3 Drives CAPRIN1 Phase Separation and Inhibits Hepatocellular Carcinoma by Suppressing c-Myc Translation. Adv Sci (Weinh). 2022;9(8):e2103817. doi:10.1002/advs.202103817 (IF=17.694)

          [5] Zhang Y, Yu X, Sun R, et al. Splicing factor arginine/serine-rich 8 promotes multiple myeloma malignancy and bone lesion through alternative splicing of CACYBP and exosome-based cellular communication. Clin Transl Med. 2022;12(2):e684. doi:10.1002/ctm2.684 (IF=11.492)

          [6] Qin J, Cai Y, Xu Z, et al. Molecular mechanism of agonism and inverse agonism in ghrelin receptor. Nat Commun. 2022;13(1):300. Published 2022 Jan 13. doi:10.1038/s41467-022-27975-9 (IF=17.681)

          [7] Tang X, Deng Z, Ding P, et al. A novel protein encoded by circHNRNPU promotes multiple myeloma progression by regulating the bone marrow microenvironment and alternative splicing. J Exp Clin Cancer Res. 2022;41(1):85. Published 2022 Mar 8. doi:10.1186/s13046-022-02276-7(IF=12.658)

          [8] Yang X, Wang X, Xu Z, et al. Molecular mechanism of allosteric modulation for the cannabinoid receptor CB1 [published online ahead of print, 2022 May 30]. Nat Chem Biol. 2022;10.1038/s41589-022-01038-y. doi:10.1038/s41589-022-01038-y (IF=16.174)

          [9] Xie F, Su P, Pan T, et al. Engineering Extracellular Vesicles Enriched with Palmitoylated ACE2 as COVID-19 Therapy. Adv Mater. 2021;33(49):e2103471. doi:10.1002/adma. 202103471 (IF=30.849)

          [10] Liang Y, Lu Q, Li W, et al. Reactivation of tumour suppressor in breast cancer by enhancer switching through NamiRNA network. Nucleic Acids Res. 2021;49(15):8556-8572. doi:10.1093/nar/gkab626 (IF=16.9)

          [11] Fan Y, Wang J, Jin W, et al. CircNR3C2 promotes HRD1-mediated tumor-suppressive effect via sponging miR-513a-3p in triple-negative breast cancer. Mol Cancer. 2021;20(1):25. Published 2021 Feb 2. doi:10.1186/s12943-021-01321-x (IF=27.403)

          [12] Dai L, Dai Y, Han J, et al. Structural insight into BRCA1-BARD1 complex recruitment to damaged chromatin. Mol Cell. 2021;81(13):2765-2777.e6. doi:10.1016/j.molcel.2021.05.010 (IF=17.97)

          [13] Zhang K, Wang A, Zhong K, et al. UBQLN2-HSP70 axis reduces poly-Gly-Ala aggregates and alleviates behavioral defects in the C9ORF72 animal model. Neuron. 2021;109(12):1949-1962.e6. doi:10.1016/j.neuron.2021.04.023 (IF=17.17)

          [14] Liang Y, Lu Q, Li W, et al. Reactivation of tumour suppressor in breast cancer by enhancer switching through NamiRNA network. Nucleic Acids Res. 2021;49(15):8556-8572. doi:10.1093/nar/gkab626 (IF=16.9)

          [15] Li T, Chen X, Qian Y, et al. A synthetic BRET-based optogenetic device for pulsatile transgene expression enabling glucose homeostasis in mice. Nat Commun. 2021;12(1):615. Published 2021 Jan 27. doi:10.1038/s41467-021-20913-1 (IF=14.92)

          [17] Gu C, Wang Y, Zhang L, et al. AHSA1 is a promising therapeutic target for cellular proliferation and proteasome inhibitor resistance in multiple myeloma. J Exp Clin Cancer Res. 2022;41(1):11. Published 2022 Jan 6. doi:10.1186/s13046-021-02220-1 (IF=11.161)

          [18] Zhou Y, Li D, Luo J, et al. Sulfated glycosaminoglycans and low-density lipoprotein receptor mediate the cellular entry of Clostridium novyi alpha-toxin. Cell Res. 2021;31(8):935-938. doi:10.1038/s41422-021-00510-z (IF=25.617)

          [19] Luo Q, Wu X, Zhao P, et al. OTUD1 Activates Caspase-Independent and Caspase-Dependent Apoptosis by Promoting AIF Nuclear Translocation and MCL1 Degradation. Adv Sci (Weinh). 2021;8(8):2002874. Published 2021 Feb 8. doi:10.1002/advs.202002874 (IF=15.84)

          [20] Yan F, Huang C, Wang X, et al. Threonine ADP-Ribosylation of Ubiquitin by a Bacterial Effector Family Blocks Host Ubiquitination. Mol Cell. 2020;78(4):641-652.e9. doi:10.1016/j.molcel.2020.03.016 (IF=17.97)

          [21] Sun X, Peng X, Cao Y, Zhou Y, Sun Y. ADNP promotes neural differentiation by modulating Wnt/β-catenin signaling. Nat Commun. 2020;11(1):2984. Published 2020 Jun 12. doi:10.1038/s41467-020-16799-0 (IF=14.911)

          [22] Yang X, Wang H, Xie E, et al. Rewiring ERBB3 and ERK signaling confers resistance to FGFR1 inhibition in gastrointestinal cancer harbored an ERBB3-E928G mutation. Protein Cell. 2020;11(12):915-920. doi:10.1007/s13238-020-00749-z (IF=14.872)

          [23] Zou Y, Wang A, Shi M, et al. Analysis of redox landscapes and dynamics in living cells and in vivo using genetically encoded fluorescent sensors. Nat Protoc. 2018;13(10):2362-2386. doi:10.1038/s41596-018-0042-5 (IF=13.490)

          [24] Hao H, Hu S, Chen H, et al. Loss of Endothelial CXCR7 Impairs Vascular Homeostasis and Cardiac Remodeling After Myocardial Infarction: Implications for Cardiovascular Drug Discovery. Circulation. 2017;135(13):1253-1264. doi:10.1161/CIRCULATIONAHA.116.023027 (IF=18.881)

           
           
          qPCR系列(滑動查看)

          [1] Seki T, Yang Y, Sun X, et al. Brown-fat-mediated tumour suppression by cold-altered global metabolism. Nature. (IF 69.504)

          [2] Chen P, Wang W, Liu R, et al. Olfactory sensory experience regulates gliomagenesis via neuronal IGF1. Nature. 2022. (IF 69.504)

          [3] Yu Q, Liu S, Yu L, et al. RNA demethylation increases the yield and biomass of rice and potato plants in field trials. Nat Biotechnol. 2021. (IF 68.164)

          [4] Dong W, Zhu Y, Chang H, et al. An SHR-SCR module specifies legume cortical cell fate to enable nodulation. Nature. 2021. (IF 69.504)

          [5] Bi X, Wang K, Yang L, et al. Tracing the genetic footprints of vertebrate landing in non-teleost ray-finned fishes. Cell. 2021. (IF 66.850)

          [6] Liu S, Hua Y, Wang J, et al. RNA polymerase III is required for the repair of DNA double-strand breaks by homologous recombination. Cell. 2021.(IF 66.850)

          [7] Lu XY, Shi XJ, Hu A, et al. Feeding induces cholesterol biosynthesis via the mTORC1-USP20-HMGCR axis. Nature. 2020.(IF 69.504)

          [8] Liu CX, Li X, Nan F, et al. Structure and Degradation of Circular RNAs Regulate PKR Activation in Innate Immunity. Cell. 2019. (IF 66.850)

          [9] Han X, Wang R, Zhou Y, et al. Mapping the Mouse Cell Atlas by Microwell-Seq. Cell. 2018.(IF 66.850)

           
          科研路上高分paper發(fā)不停,小翌助您過關(guān)斬將,每天都出好數(shù)據(jù)。
           

          轉(zhuǎn)染試劑產(chǎn)品目錄

           

          應(yīng)用場景

          名稱

          貨號

          規(guī)格

          細(xì)胞類型:貼壁/懸浮
          核酸類型:DNA、siRNA

          Hieff Trans®脂質(zhì)體核酸轉(zhuǎn)染試劑

          40802ES02

          0.5 mL

          40802ES03

          1.0 mL

          40802ES08

          5×1mL

          細(xì)胞類型:貼壁/懸浮
          核酸類型:DNA

          磷酸鈣法細(xì)胞轉(zhuǎn)染試劑

          40803ES70

          200 T

          用途:病毒感染、DNA轉(zhuǎn)染

          聚凝胺(10 mg/ml

          40804ES76

          500 μL

          40804ES86

          5×500 μL

          細(xì)胞類型:懸浮
          核酸類型:DNA、siRNA

          Hieff Trans® 懸浮細(xì)胞專用脂質(zhì)體核酸轉(zhuǎn)染試劑

          40805ES02

          0.5 mL

          40805ES03

          1.0 mL

          40805ES08

          5×1 mL

          細(xì)胞類型:貼壁/懸浮
          核酸類型:siRNA、miRNA

          Hieff Trans® siRNA/miRNA體外轉(zhuǎn)染試劑

          40806ES01

          0.1 mL

          40806ES02

          0.5 mL

          40806ES03

          1.0 mL

          細(xì)胞類型:貼壁/懸浮
          核酸類型:DNAsiRNA、miRNA

          Hieff Trans® 通用型轉(zhuǎn)染試劑

          40808ES02

          0.5 mL

          40808ES03

          1 mL

          40808ES08

          5×1 mL

          細(xì)胞類型:貼壁/懸浮
          核酸類型:mRNA

          Hieff Trans® mRNA轉(zhuǎn)染試劑

          40809ES01

          0.1 mL

          40809ES03

          1 mL

          細(xì)胞類型:貼壁/懸浮
          核酸類型:DNA

          PEI轉(zhuǎn)染試劑MW25000

          40815ES03

          1 g

          40815ES08

          5×1 g

          細(xì)胞類型:貼壁/懸浮
          核酸類型:DNA

          線性PEI轉(zhuǎn)染試劑(速溶型)MW40000

          40816ES02

          100 mg

          40816ES03

          1 g

          細(xì)胞類型:293
          核酸類型:DNA
          用途:AAV/LV載體研發(fā)與工藝開發(fā)

          Hieff Trans® PEI轉(zhuǎn)染試劑

          40820ES04

          1.5 mL

          40820ES10

          10 mL

          40820ES60

          100 mL

          點(diǎn)擊產(chǎn)品名稱查看詳情

           

           

          反轉(zhuǎn)錄定量系列產(chǎn)品目錄

           

          方法

          分類

          產(chǎn)品名稱

          貨號

          反轉(zhuǎn)錄

          一步完成gDNA去除與反轉(zhuǎn)錄

          Hifair® V one-step RT-gDNA digestion SuperMix for qPCR

          11142ES

          高靈敏度預(yù)混液(gDNA去除步驟)

          Hifair® III 1st Strand cDNA Synthesis SuperMix for qPCR (gDNA digester plus)

          11141ES

          高靈敏度試劑盒 (gDNA去除步驟)

          Hifair® III 1st Strand cDNA Synthesis Kit (gDNA digester plus)

          11139ES

          miRNA反轉(zhuǎn)錄試劑盒(加A法)

          Hifair® miRNA 1st Strand cDNA Synthesis Kit( A )

          11148ES

          快速反轉(zhuǎn)錄試劑盒(gDNA去除步驟)

          Hifair® AdvanceFast 1st Strand cDNA Synthesis Kit

          11149ES

          qPCR染料法

          高靈敏通用型qPCR預(yù)混液(染料法)

          Hieff UNICON® Universal Blue qPCR SYBR Master Mix

          11184ES

          高靈敏型qPCR預(yù)混液(染料法)

          Hieff UNICON® qPCR SYBR Green Master Mix (No Rox)

          11198ES

          Hieff UNICON® qPCR SYBR Green Master Mix (Low Rox)

          11199ES

          Hieff UNICON® qPCR SYBR Green Master Mix (High Rox)

          11200ES

          普通型qPCR預(yù)混液(染料法)

          Hieff® qPCR SYBR Green Master Mix (No Rox)

          11201ES

          Hieff® qPCR SYBR Green Master Mix (Low Rox)

          11202ES

          Hieff® qPCR SYBR Green Master Mix (High Rox)

          11203ES

          miRNA qPCRA

          Hieff® miRNA Universal  qPCR SYBR Master Mix(加A法)

          11171ES

          miRNA qPCR莖環(huán)法

          Hieff® miRNA Universal  qPCR SYBR Master Mix(莖環(huán)法)

          11170ES

          RNA一步法RT-qPCR(染料法)

          Hifair® III One Step RT-qPCR SYBR Green Kit

          11143ES

          點(diǎn)擊產(chǎn)品名稱查看詳情

           

          400-6111-883